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Molecular-dynamics simulation of amorphous alloys: 
I. Atomic structure of fully relaxed systems 

E H Brandt 
Max-Planck-Institut fur Metallforschung, Institut fur Physik, D-7000 Stuttgart 80, Federal 
Republic of Germany 

Received 10 October 1988, in final form 25 April 1989 

Abstract. Amorphous structures of one or two types of atoms of various radii and masses 
and interacting by various central potentials are simulated by molecular dynamics on a 
computer. Fully relaxed atomic arrangements resulting from simulated annealing are inves- 
tigated with the aim of getting an indication of possible mechanisms of self-diffusion, which 
is quantitatively studied in the following paper. Relaxation of random positions yields dense 
and homogeneous amorphous structures with neither microcrystals nor holes. Defective 
crystals, depending on the annealing rate and potentials, yield either defective crystals again 
or completely amorphous structures, which in some cases contain holes or channels. 

1. Introduction 

Self-diffusion of the atoms in solids is an interesting statistical problem. Whereas much 
is known about diffusion mechanisms in crystalline solids, diffusion in non-crystalline 
solids is still not well understood (Kronmuller and Frank 1989 and references therein). 
Concepts like diffusion via vacancies or interstitials or along grain boundaries, which 
have proven very useful in crystalline matter, usually cannot be applied to amorphous 
alloys because the notion of such defects loses its sense, or at least has to be considered, 
in closely packed amorphous arrangements of atoms. Extended or smeared-out defects 
like regions of slightly higher or lower densities, which at low temperatures Tprove to 
be stable (Brandt and Kronmuller 1983, Brandt 1984) cannot migrate without self- 
destruction. This is a general feature of any statistically (i.e. at T = 0) stable configuration 
with internal stresses in amorphous alloys like density fluctuations or quasi-dislocations. 
Such defects may disappear when Tis raised (Laakkonen and Nieminen 1988) or when 
the surrounding atoms rearrange. 

Generally speaking, the definition of defects in amorphous alloys presents problems. 
In order to be a useful concept, (i) a defect should satisfy some conservation law and (ii) 
there should be far fewer defects than atoms. These two conditions are satisfied in 
crystals. (i) For example, dislocations cannot end inside the crystal and vacancies or 
interstitials cannot vanish except by reaction with other defects or with the surface. In 
amorphous metals, however, regions of ‘free volume’ (reduced atomic density) can 
disappear inside the bulk like a hole collapses in a sand heap. In particular, these regions 
do not have to migrate to the surface as is sometimes believed. (ii) It is the scarcity of 
defects which makes the description of a real crystal as a perfect crystal with defects a 
useful concept (Seeger 1955, 1958). In amorphous solids the concentration of appro- 
priately defined local ‘defects’ is comparable to the concentration of atoms; this renders 
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the concept of such structural defects of little help. The definition of more extended 
defects appears to be more sensible. For example, dipolar stress fields ascribed to 
dislocation-like sources were concluded from magnetisation curves of amorphous ferro- 
magnets (Kronmiiller and Ulner 1977, Kronmuller et a1 1979). The quasi-dislocation 
loops predicted by Kronmiiller et a1 (1979) were observed by Piller and Haasen (1982) 
by an atom-probe field-ion microscope and identified as pinning centres in amorphous 
superconductors by Wordenweber et a1 (1988). 

Various microscopic mechanisms have been proposed for self-diffusion in amorph- 
ous alloys (Frank et a1 1988), e.g. direct diffusion, diffusion by collective motion of many 
neighbouring atoms, by vacancy mechanisms, or along ‘easy channels’ where the atomic 
density is less than average. Evidence for the latter mechanism is concluded from the 
experimental observation (Horvath et a1 1987,1988) that the diffusivity decreases when 
the amorphous specimen is annealed. The self-diffusion data obtained by these radio- 
tracer experiments are reviewed and analysed by Kronmuller and Frank (1989). 

In order to get more insight into this problem we performed molecular-dynamics 
simulations. In the present paper (part I) we describe the numerical method (9  2 )  and 
characterise the resulting amorphous structures by their radial density functions (9  3 )  
and by plots of the atomic positions (9  4) which visualise the arrangement of nearest 
neighbours and show dilute regions, holes or empty channels. In 9 5 the influence on 
relaxed random structures of the type of interaction (atomic size and softness), of the 
annealing velocity and of the initial (e.g. random) atomic arrangement is studied. In 9 6 
a strongly perturbed FCC crystal is chosen as initial atomic arrangement. In this case, 
depending on the interaction and on the relaxation method or velocity, either another 
defective FCC crystal results (with narrow peaks in the radial density) or a completely 
amorphous arrangement. Section 7 summarises the results. A forthcoming paper (part 
11, Brandt 1989) deals with the paths of oscillating and diffusing atoms and presents 
quantitative results of diffusion coefficients and their temperature dependence. 

2. The simulation method 

Our model system contains N,  atoms A of mass mA and NB < NA atoms B of mass mB 
with positions r, in a cube with periodic boundary conditions. The volume and pressure 
can thus be controlled without introducing a surface. The atoms interact by central 
symmetric pair potentials GAA(r),  GAB(r) and @BB(r) with repulsive core and attractive 
tail. The position of their minima d,, = 2r, and dAB = rA + rB define the atomic radii 
r, and rB. The interaction @BB is chosen to be merely repulsive to ensure good separation 
of the B-type atoms. 

The use of pair potentials is the main restriction of our model. This may be improved 
by using the empirical density-dependent potentials constructed by Daw and Baskes 
(1983, 1984), Finnis and Sinclair (1984) or Ackland et a1 (1987). In order to stress the 
model character of pair potentials for solids we chose simple parabolae (Brandt 1985, 
Brandt and Kronmiiller 1987) which look similar to Morse potentials cut off at r = R 
(figure 1): 

G 1 ( r )  = a(u4 + U’) 

l u z ( r )  = a(u4 - 2 ~ ’ )  

G 3 ( r )  = h ( u 6  - 3u2)  

U = ( R  - r ) / ( R  - r o )  r < R  

u = o  r >  R. 
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Figure 1. The three interaction potentials defined 
by equation (1): @BB(r) = @,(r )  (a  = 0 .5 ,  ro = 1, 
R = 1 . 4 ) ; @ , , ( r ) = @ , ( r ) ( a = l , r , = I , R = 1 . 4 ) ;  
@ * B ( T )  = @3(r) ( U  = 1, ro = 0.6,  R = 1). Same 
potentials as in figure 3 below. 

The monotonically decreasing function G1 is used for @ B B .  For and GAB we use q52 
or &,which exhibit minima of depth a at r = ro where U = 1. The function &(r) exhibits 
a sharper minimum than @ 2 ( ~ ) .  In the following we write dAA, dAB or dgg for ro;  RA*, 
RAB or R B B  for R ;  and aAA, aAB or aBB for a. 

One aim of the present paper is to investigate the dependence of the properties of 
the amorphous model system on the depths and ranges of the interaction potentials. In 
order to bring this dependence out more clearly, we choose as energy and length unit 
the depth and position of the minimum in @AA(r) and as mass unit mA. This choice 
defines also the units f of time and D of diffusivity. Thus in the following we put 

d A A  = 2 r A  = 1 

- ~ A A ( ~ A A )  = ~ A A  = UA = 1 

= 1 ( 2 )  

Z =  2 r A ( m A / ~ , ) ' f 2  = 1 

D = 2 r , ( ~ ~ / m ~ ) ~ / *  = I. 

The essential parameters of the model system are then RA*, dAB, uAB, dAB, RAB, uBB,  

d B B ,  RBB, mB and NB/NA. The potential and kinetic energies of this system read 

C @AB(rr,) + t C. Z: $BB(r$J)  pot = t  E 2 @AA(ri , )  + (3) 
I = I A J = J A  I=IA ] = J B  I = l g  ]']B 

I # J  l # J  

Here r, are the positions of the A-type atoms (i = iA) or B-type atoms (i  = iB) and 
rij = /ri - 51. For ideal FCC or HCP lattices with pure nearest-neighbour interaction, 
one has Upot = -6N. The same binding energy approximately holds also for our 
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Table 1. Potential energy referred to the ideal FCC value and coordination number Z of fully 
relaxed amorphous systems of N = N A  = 100 atoms with interaction ranges RAA = 1.5 (soft) 
to RAA = 1.2 (hard). The upper six rows give results of three runs with different annealing 
velocities and constant volume (see text). In the lower three rows also the volume was relaxed 
resulting in an expansion (do > dAA) or contraction ( d o  < dAA)  of the system. 

Interaction range, RAA 

1.5 1.4 1.3 1.25 1.2 c,,, N,,, 

Energy, -1.0113 
Upo,16NII, - 1.0088 

-1.0105 

Coordination 14.12 
number. Z 14.07 

14.21 

UP,,/6NU~i,z -1.0244 
d i , l d A A  14.90 

0.9677 

- 0.9252 
-0.9482 
-0.9479 

13.64 
13.64 
13.68 

- 0.95 14 
13.75 
0.9917 

-0.8757 -0.8259 
-0.8709 -0.8194 
-0.8705 -0.822 

13.81 13.92 
13.78 13.98 
13.74 14.00 

-0.8809 -0.8411 
13.61 13.49 
1.0084 1.0178 

-0.7622 0.995 
-0.7485 0.990 
-0.7400 0.985 

14.02 0.995 
14.09 0.990 
14.04 0.985 

-0.8020 0.995 
13.38 0.995 

1.0255 0.995 

2000 
1000 
667 

2000 
1000 
667 

2000 
2000 
2000 

amorphous systems. The temperature of the system is defined according to the 
equipartition principle by the time average of the kinetic energy, ( Ukln) = $kT. 

The amorphous system is generated in the following way. First, N randomly posi- 
tioned hard spheres with radius r,,, are filled into the periodicity cube. If r,,, = 0.39(7// 
Nj1I3 is chosen, this requires about 5.4N trials. The first NB of these are interpreted as 
B-type atoms and the remaining ones as A-type atoms. These positions are then relaxed 
to a densely packed amorphous arrangement. The relaxation may be achieved by the 
static (zero-temperature) procedure described by Brandt and Kronmuller (1987); this 
uses first merely repulsive potentials at fixed volume and then switches on the final 
potentials and relaxes the volume (pressure-free system). If desired, random atomic 
displacements with an amplitude decreasing with time may be added, which simulate 
finite temperature. 

For the present simulations a dynamic relaxation method was preferred. This is more 
straightforward but slightly more time-consuming and yields practically the same fully 
relaxed atomic arrangements. With the correct potentials switched on, the initially nearly 
random positions are slowly annealed in a molecular-dynamics simulation. Cooling is 
achieved by reducing all velocities by a factor C,,, = 0.995 after each iteration step of 
length dt = 0.007 (in our reduced units f). After 2000 time steps the system is practically 
fully relaxed. This is checked by subsequent static relaxation, which converges after 10 
to 50 steps and reduces the energy U,,, by a relative amount less than 5 X Faster 
annealing (Nre, 500 steps with velocity reduction factors Cvel 3 0.98) yields fully 
relaxed amorphous systems, too, but typically with slightly higher potential energy 
(table 1 j.  Afterslow annealing, any set o fN  = 1000 random positions yielded amorphous 
states which, for the same atomic interaction and composition, exhibit energies that 
differ very little (table 1) and radial density functions that practically coincide (0 3). 

Our molecular-dynamics simulation uses the velocity form of the Verlet algorithm 
(Swope et a1 1982) to integrate the Newton equations for each atom. This algorithm 
proves numerically very stable and allows one to choose large time steps, even with 
single accuracy, thus saving computation time. We chose the time step dt to be so large 
that no more than a few atoms move more than 0.05dAA in one step. This means dt = 
0.004 to 0.007 depending on the temperature. 
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A feeling for the required time step is provided, for example, by the oscillation 
frequency v of a B-type atom interacting with 12 A-type atoms situated at a distance 
dAB. Averaging the curvatures of the 12 potentials @AB over all orientations yields 
the curvatures of the potential well (the spring constant) k = 12(c0s2,p) 
@>B(dAB) = 4@lB(dAB) and thus the oscillation frequency 

V = (1/2n)( k/m) 1’2 = ( l / l d ) [  @ L B  ( ~ A B ) / ~ B ]  ’”. ( 5 )  
For example, with @AB = @ 2 ,  aAB = 1, dAB = 0.8, RAB = 1.1 and mB = 0.25 one gets 

length 0.007 occur during one oscillation period. 
When desired, the volume of the model was relaxed such that there is no applied 

pressure during the molecular-dynamics calculation. This was achieved by carefully 
relaxing the ratio of the periodicity length and the width dAA of the potential @AA in each 
time step. We do this by formally changing the length scale of the potentials while leaving 
the periodicity volume and the atomic positions unchanged. For improved stability the 
relative change of this length is restricted to 1% per time step. This formal change of 
dAA should not be confused with the fact that our final results are presented with dAA as 
length unit. For the relaxation of the volume the sums of the first and second derivatives 
of U,,,, with respect to the r,, have to be calculated in each time step. 

A convenient measure for the density of the atomic arrangement is the atomicspacing 
do = 21’6(V/N)1/3 of an FCC lattice with the same atomic density. The ratio do/dAA is just 
the ratio by which the linear extension of the system changes when pressure is applied 
or when the volume is relaxed. Our relaxation always started with the FCC density, do/ 
dAA = 1. After annealing, i.e. when zero temperature was reached, dO/dAA attained an 
equilibrium value slightly larger or smaller than 1 (cf. table 1). That a seemingly larger 
equilibrium density than in the ideal FCC lattice is possible in amorphous arrangements, 
namely when do < dAA, simply reflects the fact that in our model the atomic radius is not 
prescribed as rigorously as for hard spheres. Some atomic pairs have distances less than 
dAA as may be seen from the radial density functions in § 3. 

@ > B ( ~ A B )  = 8(RAB - dAB)-2 = 88.9 and v = 6.00. Thus ( V  dr)-l 1 2 4  time steps of 

3. Radial density functions 

In figures 2 to 5 normalised radial density functions g(r )  are plotted for fully relaxed 
systems of 1000 atoms: 

g(r> = 47Mr) /p (m)  - 11 (6) 
where p(r)  is the radial density. The partial density functions gAA(r), gAB(r) and gBB(r) 
are defined by counting only the A-A, A-B or B-B atomic pairs, andg,,,(r) by counting 
all atoms (cf. e.g. Brandt and Kronmiiller 1987). The scale of the ordinate in figures 2 
to 5 is fixed by the condition that g ( r )  = -4xr must hold for small r (and for all distances 
where p ( r )  = 0; see figure 12 below). The depicted smooth g(r )  are obtained by the 
convolution of the original histogram g, = g(rJ  ( r ,  = iAr,  Ar = 1/80) by a Gaussian of 
width 6 = 0.048: 

(7) 
i 

Figure 2 shows g ( r )  for systems consisting of only one type of atom interacting by 
potentials $I = G2(r )  (cf. the curve @AA in figure 1) with ranges R = 1.2,1.3,1.4 and 1.5. 
With increasing hardness of the potential, i.e. with decreasing R, the first peak in g ( r )  
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Figure 2. Radial density functions of one-com- 
ponent systems of N = 1000 atoms interacting by 
the Lennard-Jones-type potentials Q 2 ( r ) ,  rB/rA = 0.2 (see text). 
equation (l), for various ranges RAA/dAA = 1.2 to 
1.5 (see text). The scale for g ( r )  is 0.02/dAA in all 
plots of g ( r )  in this paper. 

becomes sharper and the splitting of the second peak, the first and second minima, and 
the hump to the left of the minimum become more pronounced. The large coordination 
numbers Z = 14 (number of nearest neighbours) listed in table 1 are defined by inte- 
grating the first peak in the radial density p( r )  up to the first minimum occurring at r = 
1.4 in figure 2. Note that at this minimum p ( r )  is very small, in contrast to the FCC lattice 
which has a peak at r = v2. 

In the computation of figure 2 the volume was not relaxed. After relaxation of the 
volume practically the same functions g(r )  are obtained. The change do/d  of the linear 
extension of the system during this pressure-free relaxation is given in table 1. 

Figures 3 to 5 show the partial density functions for systems of 800 A-type and 200 
B-type atoms. In figure 3 (dAB = 0.6) and figure 4 (dAB = 0.75) the B-type atoms are 
smaller than the A-type atoms and in figure 5 (dAB = 1.3) they are larger. The other 
parameters of the potentials are for figures 3, 4 and 5 ,  respectively, $AA = $2,  RAA = 

Figure 3. Partial radial density functions for N A  = 
800 large and N, = 200 small atoms, dAB = 0.6, 

1.4 (1.4, 1.5), $AB = $3 ($2,  $2) ,  UAB = 1, RA, = 1 (1.25, leg), $BB = $1, (EBB = 0.5 
(0.5, I) ,  dgg = 1(1 ,  1.2) andRBg = 1.4 (1.4, 1.8). 

The volume was not relaxed in figures 3 and 4; for small B-type atoms the volume 
relaxes only by a few per cent and the radial density is practically unchanged. For large 
B-type atoms, figure 5,  the energy increases considerably when the volume is kept fixed 
at the FCC value of the A-type atoms. The volume was, therefore relaxed in figure 5; this 
increased the linear extension of the system by a factor of 1.155. 
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L I ! 

Figure 4. As figure 3 but for dAB = 0.75, rB/ rA  = 
0.5. 

Figure 5.  Partial radial density functions for N A  = 
800 small and NB = 200 large atoms, dAB = 1.3, 
rB/ rA  = 1.6. 

The partial density functions of this model were compared by Kizler (1988) and 
Kizler et a1 (1988) with those obtained for FesoBzo by neutron and x-ray scattering. Good 
agreement was found. Kizler (1988) investigated also the distribution of the angles under 
which a given atom sees pairs of nearest neighbours in the present model and other 
models. 

4. Atomic positions 

Whereas radial density functions give quantitative but angular-averaged data, a better 
visualisation of the atomic arrangements is achieved by direct plots of the atomic posi- 
tions. We choose the following presentation as a first trial. We cut our periodicity cube 
into parallel slices of equal thickness, project the atomic centres of each slice on a plane 
parallel to the slice, and draw circles of the corresponding atomic radii rA or rB around 
it. If a slice contains too few atoms there will be gaps between the circles, and if it contains 
too many the circles will overlap. But with appropriate choice of the number of slices 
and atoms the projected circles will look almost like a two-dimensional arrangement of 
discs with few overlaps and gaps, and still represent a three-dimensional atomic arrange- 
ment. 

The following figures show such representations of equilibrium systems of 250 atoms 
with the periodicity cube cut into six slices. Slices with increasing height are represented 
in the sequence: lower left , lower right, middle left, middle right , upper left , upper right. 
The atomic centres are marked by crosses. The dash length of the circles indicates the 
height of the atoms; short (long) dashes mean that the atomic centre is close to the lower 
(upper) surface of the slice. This presentation in principle contains all information on 
the atomic positions. For better visualisation three such plots may be drawn for a given 
system, with cuts perpendicular to the x ,  y and z directions. 
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Each of the six squares in a plot has periodic boundary conditions, i.e. a circle cut by 
one boundary is supplemented at the opposite boundary. Note that in these plots many 
circles touch although the interaction is rather soft, i.e. the minima of $AA and @BB are 
wide, and although the presentation projects the atoms into planes. 

In order to emphasise certain symmetry configurations, some of the circles are shown 
hatched and some atomic centres are connected by lines. This marking visualises that in 
amorphous metals and alloys the symmetry configurations in general are distorted. In 
particular, the polyhedra (or polygons in our plots) investigated by Bernal (1959) and 
Finney (1970) are not regular. This fact was particularly stressed by Egami et af (1980), 
Srolowitz et a1 (1981) and Chen et af (1988): the distortion of a polyhedron turns out to 
influence the point shear stress at the atom in its centre more than does the type of 
polyhedron. Symmetry considerations in amorphous systems, therefore, have to be 
taken with care. 

The purpose of these plots is to indicate the influence of the interaction potentials 
on the atomic structure and to stimulate new ideas as to what might be the meaning and 
position of the ‘free volume’ and the two-level systems (Anderson et af 1972, Kronmiiller 
1983, Chen 1986). They might further indicate possible relaxation. mechanisms (Gibbs 
et a1 1983) and possible diffusion paths. Though the present paper cannot answer all 
these questions it might help to pose the questions on the local structure and dynamics 
of amorphous alloys more clearly and show how to proceed further. 

5. Relaxed random positions 

Figures 6 and 7 show amorphous one-component systems (NB = 0) with potential range 
R A ,  = 1.3. Figure 8 shows the corresponding radial density g(r) .  In figure 6 the inter- 
action has a repulsive core and an attractive tail ($AA = @*) and in figure 7 it is merely 
repulsive (@AA = G I ,  volume kept constant). Note that the first peak and the splitting 
of the second peak are more pronounced for the Lennard-Jones-type potential, figure 
6, which yields a coordination number 2 = 13.92. For the repulsive potential, 2 = 14.10 
is slightly larger, probably since the energy barriers for rearrangements are lower for 
this smooth interaction. The shear modulus for such systems under pressure is small and 
even vanishes for certain smooth potentials, e.g. for a logarithmic potential in two 
dimensions (Brandt 1969,1986). 

The atomic arrangements look very similar in figures 6 and 7. There are quite a few 
almost regular pentagons and hexagons. In some cases their central atom can be seen in 
the same slice, in some it may be found in the slice above or below, and some pentagons 
exhibit no central atom and no atomic pair sitting close to the symmetry axis of the 
pentagon; these thus encircle a small hole. In general it is not easy to identify real holes 
in our representation since atoms that have their centres in the slice above or below may 
fill the seeming hole. Also the partial overlap of circles may be genuine, due to the 
softness of the interaction, or apparent as can be seen from the different dash lengths of 
circles belonging to atoms centred at different height. 

The arbitrary lines connecting some of the atomic centres show that the lattice planes 
or rows are not well defined in such amorphous systems. Several nearly straight rows of 
touching atoms may be identified but these end (or leave this slice) after five to eight 
atoms. Slightly or strongly curved rows may be seen as well. The choice of such rows is 
not unique, in contrast to ideal or defective crystals. 

Figure 9 shows an amorphous two-component system ( N A  = 200, NB = 50) with 
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Figure 6 .  Atomic positions in an 
amorphous system of 250 atoms of 
one typc interacting by a Lennard- 
Jones-type potential in a cube with 
periodic boundary conditions. The 
six squares show the atoms in six 
parallel slices (see text). Hatching 
is only a guide to the eye. 

‘hard’ interaction ( R A A  = 1.3) and @AA = @ A B  = G3, aAB = 2 ,  dAB = 0.8, RAB = R A A  = 
0.2, @BB = agg = 0.5,  dBB = 1, R B B  = RAB and volume = constant. The ratio of the 
radii is rB/rA = 2dAB - 1 = 0.6. The radial density for this system looks similar to that 
in figure 3 but its peak is slightly more pronounced since the interaction is shorter- 
ranged. Owing to the presence of two atomic sizes in figure 9, fewer configurations of 
high symmetry occur than in figures 6 and 7 and these are typically more distorted. Some 
of the small atoms form the centre of a pentagon of big atoms. In our alloys more empty 
space occurs than in one-component systems because the small atoms require less space 
but the big atoms cannot relax sufficiently to compensate for this. The volume was not 
relaxed in figures 6 and 7, but with volume relaxation practically identical figures result. 

The arrangements for different ranges RA = 1.3 to 1.5 look similar. Only when 
potentials with unphysically short range are used (RA* G 1.2, ‘sticking hard spheres’) 
does the picture differ markedly; in this case more ‘microcrystals’ occur and more holes, 
and the atomic density now fluctuates more since a higher energy is required to rearrange 
atoms. On the other hand, very soft potentials do not yield a markedly different picture 
than that shown in figure 9, even merely repulsive potentials under pressure. 

Figure 10 ( N A  = 200, N B  = 50) shows an amorphous system with large B-type atoms 
(dAB = 1.3, rB/rA = 2 d ~ ~  - 1 = 1.6, all potentials as in figure 5). The volume was 
relaxed; this resulted in a linear extension of 1.155 as in figure 5. Obviously, alloying 
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Figure7.Asfigure6but foramerely 
repulsive potential under pressure. 
The lines connecting the atomic 
centres are guides to the eye. 

c 

L 
0 1 2 

r/dAA 

Figure 8. The radial density functions of the 
amorphous systems of figures 6 and 7 :  curve A, 
repulsive interaction (figure 7 ) ;  curve B, inter- 
action with repulsive core and attractive tail 
(figure 6). 



Molecular-dynamics simulation of amorphous alloys: I 9995 

Figure 9. Amorphous two-corn- 
ponent system of N A  = 200 large 
and NB = 50 small atoms ( T B / T A  = 
0.6) with hard interaction ( R A A  = 
1.3). 

with a small amount of big atoms perturbs the system more than small atoms do. 
Some of the large atoms are surrounded by a ring of eight small atoms. Somewhat 
unexpectedly, no big holes occur. All seeming gaps are filled with one or two big atoms 
which have their centre in the slice above or below. One may say that the small (majority) 
atoms effectively fill the gaps between the big atoms. Note also that many circles touch 
even though the interaction in figure 10 is rather soft. 

6. Amorphisation of defective crystals 

During our computer simulation amorphous crystals never crystallised. In fact, the 
better the relaxation was, the ‘more amorphous’ became the system, viz. the radial 
density deviates more from that of perturbed crystals. In particular, the minimum near 
Y/dAA -- 1.4 (the position of the second peak in the FCC lattice) gets deeper and p( r )  
becomes almost zero there. Apparently crystallisation requires a sufficiently large 
nucleus or surface that is already crystalline. Starting at sufficiently high temperature 
our slow annealing method always yields the same amorphous equilibrium arrangement 
in the sense that, for the same composition and interactions, the slightly smoothened 
radial density functions practically coincide and do not depend on the starting con- 
figuration. This is not true for careful static relaxation methods. These may yield 
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Figure 10. Amorphous two-com- 
ponent system of N A  = 200 small 
and NB = 50 large atoms (rB/rA = 
1.6, same potentials as in figure 5 ) .  

metastable amorphous systems which exhibit regions of lower-than-average density 
(Brandt 1984). 

In order to get more insight into the way this randomisation occurs, we performed 
simulations starting with a defective crystalline arrangement of atoms, which was then 
annealed at various velocities. Some of the results are shown in figures 11 to 13 for an 
FCC lattice of originally 256 A-type atoms from which six are taken away, thus creating 
six vacancies at random positions, and then 50 atoms are replaced by smaller ones (B- 
type) of which 25 are randomly positioned and 25 are neighbours, thus creating a hole. 
The resulting starting configuration exhibits N A  = 200 and NB = 50 as in figure 9. 

In figure 11 the potentials are as in figure 9 (RAA = 1.3, RAB = RAA - 0.2, dAB = 0.8, 
thus rB/rA = 0.6) but with weaker A-B interaction, aAB = 1. The molecular dynamics 
started with the perturbed FCC lattice, then annealing was performed by reducing all 
velocities by a factor 0.985 in each time step (dt = 0.007). Note the big hole, which is 
real, as can be seen by cutting along different directions. Large parts of the system 
remain crystalline with defects; thus the annealing in this case did not change the 
arrangement qualitatively. The smaller atoms sit in vacancies or holes but in general are 
not centred in these but preferably stick to internal surfaces. 

The radial density of this relaxed defective crystalline system exhibits rather narrow 
lines (figure 12). The lines of &,A(r) are typical for the FCC lattice (at r = I ,  V2, V 3 , 2 ,  
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Figure 11. Relaxed defectivecrystal 
with initially six random vacancies, 
25 randomly chosen large atoms 
replaced by small atoms, and 25 
neighbouring atoms replaced by 
small ones. N A  = 200, N B  = 50 as in 
the amorphous system of figure 9. 
Hard interaction (RA* = 1.3). 

V.5, etc.). IngAB(r) only the line at Y = 0.8 = dAB is pronounced, andgBB(r) just reflects 
the strong repulsion which we assumed for the B-type atoms. The smearing of the lines 
in figure 12 is due to lattice distortions caused by relaxation around defects. Note, 
however, that for systems consisting of only one type of atom no relaxation occurs 
around vacancies if the range of their interaction is RAA G d2. In this case only nearest 
neighbours interact in ideal FCC, HCP or BCC lattices and therefore the force between 
each pair of atoms is exactly zero, not only the sum of the forces on each atom. Thus the 
system will remain in static equilibrium if one or several atoms are taken away. 

From this argument we conclude that relaxation around a vacancy occurs only when 
the range of the interaction extends beyond the nearest neighbours, or when the potentials 
are not rotationally symmetric or are not pair potentials, or if external pressure is 
applied. In this latter case the atoms do not sit in the potential minima of their neighbours. 
A further possibility for relaxation to occur is when atoms of different interaction 
are present. This is the case in figures 11 and 12. As a result the distances between 
neighbouring type-A atoms are not all exactly dAA and therefore the peaks in gAA(r) are 
slightly smeared. 

An interesting effect occurs when the interaction is chosen to be softer. Beyond a 
certain value of the ‘softness’ RAA the annealing of a defective FCC lattice suddenly yields 
an amorphous system. This ‘amorphisation’ is shown in figures 13 and 14 for exactly the 
same starting configuration as in figures 11 and 12, and for the same annealing method and 
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Figure 12. Partial radial density function for the 
system of figure 11. The distribution gAA(r) of the 
A-type atoms looks as expected for a distorted 
FCC lattice. Note the peak at r = 1.4 dAA which is 
absent in BCC crystals and in relaxed amorphous 
systems. 

Figure 13. Amorphous system gen- 
erated by the relaxation of the same 
initial configuration as in figure 11 
(defective FCC crystal), with ident- 
ical annealing rate but with slightly 
softer interaction of the atoms 
(RA* = 1.4 rather than 1.3). This 
small difference leads to a com- 
pletely different arrangement 
which, apart from the existence of 
a big hole, cannot be distinguished 
fromother amorphoussystemsgen- 
erated by relaxation of random 
positions, cf. the radial densities in 
figures 12 and 14. 



Molecular-dynamics simulation of amorphous alloys: I 9999 

Figure 14. Partial radial density functions for the 
system of figure 13. As compared with figure 12 
the system is now completely amorphous. In par- 
ticular, gAA(r) no longer has a peak at Y = 1 .4  d A A  

0 1 2 but rather a minimum and looks like the gAA(r )  in 
figure 4. 

0 

r/dAA 

presentation but for RAA = 1.4 instead of RA, = 1.3. The resulting atomic arrangement 
(figure 13) looks similar to that in the amorphous systems in figure 9, and the radial 
density (figure 14) looks as in figures 3 or 5 .  In particular, there are several almost regular 
pentagons in the arrangement, and the line at r = 1.4ing(r) has disappearedcompletely. 
The only relict of the original defective FCC lattice is a hole at the same position as in 
figure 11. This means that without applied pressure holes do not tend to collapse in our 
model system. 

The observed transition to a fully amorphous arrangement when RAA is changed 
clearly depends on the relaxation method. For example, careful static relaxation still 
yields defective crystals at even softer potentials, and very long dynamic relaxation, 
which keeps the system at high temperature for a while, will yield an amorphous 
system at harder potentials. Anyway, this finding indicates that small differences in the 
interaction potential may lead to a completely different system after relaxation and that 
after amorphisation of a defective lattice the short-range order may be lost completely 
but holes or internal surfaces may survive. 

The presence of such stable cracks, channels or holes may be of importance for self- 
diffusion in amorphous systems. Their existence, size, geometry, etc., in real systems 
should be investigated by appropriate experiments in order to facilitate the inter- 
pretation of diffusion measurements. Our computer simulation of self-diffusion (part 
11) so far is restricted to quite dense and well relaxed systems at relatively high tem- 
peratures. The simulation of diffusion in not fully relaxed systems requires lower tem- 
peratures to avoid further relaxation before the atoms have diffused markedly. Such 
simulations are very time-consuming. 

7. Summary 

Completely relaxed amorphous systems containing one or two types of atoms interacting 
by rotationally symmetric pair potentials with repulsive core and attractive tail are 
usually dense and free of easily visible holes or channels. If the simulated annealing is 
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performed too fast, the resulting amorphous arrangement is less compact but real holes 
or dilute regions still cannot be seen in our plots. Metastable density fluctuations can be 
detected in this case by more subtle averaging methods (Brandt 1984, Lakkonen and 
Nieminen 1988). 

Holes and regions with ‘free volume’ are observed in simulations with extremely 
short-ranging potentials (‘magnetic’ hard spheres) or when crystals containing a suf- 
ficient concentration of defects are annealed at sufficiently low temperature and with 
not too long-ranging potentials. On the other hand, the most homogeneous amorphous 
systems (with least density fluctuations and no holes) are obtained for merely repulsive 
interaction under pressure. In this case the density cannot be compared with that of hard 
spheres since the atomic radius is not defined. 

Annealing at higher temperatures always results in amorphous arrangements that 
have no memory of the original atomic arrangement. After complete relaxation the 
same partial density functions were always obtained whatever the initial position of the 
atoms. 

All our simulated amorphous systems exhibit complete absence of real micro- 
crystallites. In the plots of the atomic positions some hexagons occur, in particular in 
systems with one type of atom, but these hexagons are more or less distorted. Distorted 
also are the lattice planes, which may be drawn in these plots in a quite arbitrary way. 
A further indication of a completely amorphous state is that many pentagons can be 
seen in these plots. 

In conclusion, inspection of the static equilibrium arrangement of atoms does not 
give a clear indication of preferred diffusion mechanisms. More informative will be the 
plots of diffusion paths presented in part I1 or plots of correlated motion, which are in 
preparation. 
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